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ON A CLASS OF ELLIPTIC CURVES WITH RANK 
AT MOST TWO 

H. E. ROSE 

ABSTRACT. In this note we consider the elliptic curves Y2 = X3 + px defined 
over Q for primes p satisfying p 1_ (mod 8), and review some of their 
properties. We then compute and list (in the supplement) their ranks, and 
give, when the rank is positive, the generators of the group of rational points 
and Mordell-Weil lattice invariant T for all primes p < 50000 of the form 

+ 64n2. 

1. INTRODUCTION 

Considerable progress has been made in the study of elliptic curves defined 
over the rational field Q, but many questions remain unanswered. For example, 
formulas for, or even estimates of, the rank of many of these curves have not 
been found. Hence, it is of interest to study properties of particular classes of 
curves in the hope that some of these questions can be answered in these cases. 

In this paper we shall consider the class of elliptic curves 

CP:y2 =x3 +px, 

defined over the rational field Q and where p is a prime. Let r(Cp) denote the 
rank of this curve, that is the number of independent infinite-order generators 
of the (Mordell-Weil) group of rational points on this curve. It is known that 

if p 7 or 11 (mod 16), then r(Cp) = 0; 
if p 3, 5, 13 or 15 (mod 16), then r(Cp) = 0 or 1; and 
if p 1 or9 (mod 16), then r(Cp)=O, 1 or2, 

see Silverman [8, p. 311]. Bremner and Cassels [I] and Bremner [2] have 
considered the class of curves Cp for primes p 5 (mod 8); they showed that 
r(Cp) = 1 for p < 20000 and conjectured that this holds for all primes in their 
class. Here we shall consider the third case above, that is the curves Cp where 
p =1 (mod 8). The rank can be zero or two, and it is conjectured that it cannot 
equal one. We give some evidence in support of this; also this conjecture is a 
consequence of the full Birch and Swinnerton-Dyer conjecture, in particular it 
holds when the corresponding Shafarevich-Tate group is finite. 
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For primes p 1_ (mod 4), Gauss showed that 2 is a quartic residue modulo 
p if and only if p can be expressed as a sum of squares p = x2 + y2 where 
8 1 y. We shall call a prime with this property a G-prime in this paper; it is 
necessarily congruent to 1 (mod 8). We can easily show that r(Cp) = 0 if 
p _ 1 (mod 8) and p is not a G-prime, see ?2. The converse is only partially 
true. There are 625 G-primes less than 50000, in 366 cases the rank of the 
corresponding curve is two, examples are 

73, 89, 113, 233, ..., 49801; 

whilst in the remaining 259 cases the rank is zero, with examples 1 

257, 577, 1097, 1201, ...,49633. 

In ?2 we reduce the question of finding rational points on Cp to the problem 
of solving one or more of three simple quartic equations (numbered (I), (II) and 
(III)) in rational integers. These three quartic equations correspond to the three 
'principal homogeneous spaces' for Cp; see Silverman [8, Chapter 10]. In ?3 
we give algorithms which generate solutions to one of these equations provided 
solutions for the remaining two are known; this provides an elementary example 
of the operation of the Weil-Chatelet group for the curve. This also provides 
another derivation of the rank estimates quoted above. In ?4 we discuss briefly 
the problem of showing that the rank of our curves cannot be one. Finally, in 
?5, we describe the computations that have been undertaken to calculate the 
ranks of our curves for all G-primes less than 50000. The supplement gives the 
basic data from which the infinite-order generators of the corresponding groups 
can be constructed, the values of T for the Mordell-Weil lattice (see final section 
of this paper), and values of the L-functions when these groups are finite. 

In a forthcoming paper further computations will be presented. This will 
include evaluations of the second derivatives of the L-functions at s = 1 for 
the rank-two curves Cp listed in the supplement (thus giving further data in 
support of the full Birch and Swinnerton-Dyer conjecture) and evaluations of 
the L-functions for non G-primes. Also, all of these computations will be 
extended to primes p < 100000. For example, the order of the Shafarevich- 
Tate group Iml for the curve C50177 is 256, and 50177 is the first G-prime larger 
than 50000 for which the rank of the corresponding elliptic curve Cp is zero. 

2. PRELIMINARIES 

We shall study the elliptic curves 

(1) y =X3 +px for primes p _1 (mod 8). 

The group of rational points on (1) will be denoted Cp(Q), which we shall 
usually abbreviate to Cp. Clearly, the point (0, 0) E Cp and has order two. 
Except for this point and the neutral element, a point belonging to Cp has 
the form (u/s2, v/s3), where u, v and s are nonzero integers, and (u, s) = 

IThere is a possible connection here with real quadratic fields. If cl(p) denotes the class number 
of the field Q(./Tp), then, for G-primes less than 1097, r(Cp) = 2 if and only if cl(p) = 1 . It is 
unclear whether this is a coincidence or not; it is false when p = 1097 and for some larger primes. 
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(v, s) = 1. We have 

(2) (u/S2 V//s3) + (0, 0) = (ps2/U, pSV/U2) E C, 

and so u= r2, for some r, and r I v; or u =pr?2, forsome ri, and pri I v. 
We shall assume from now on that the first case always holds. Therefore, with 
the exception of the neutral point and the point (0, 0), a typical point on Cp 
has the form 

(3) (r2/s2, rt/s3) with (r, s) = (t, s) = 1 and rst $A 0. 

[For each such point a second point on Cp is always given by (2), and vice 
versa.] Using this assumption, we can write equation (1), cancelling r2/s6, in 
the form 

(4) r4 +ps4 = t2 

with r, s and t as in (3). Note this implies (r, t) = 1. As p -1 (mod 8), 
r and s have different parities, and t is odd; we shall consider these cases 
separately. This equation has been discussed previously in Mordell [5]. 

Case 1. Equation (4) has the form 1 6r4 + ps4 = t2 and s is odd. 

Rewriting this, we have ps4 = (t - 4r2)(t + 4r2). Now t - 4r2 and t + 4r2 
cannot have a common factor, and so each is a fourth power or p times a 
fourth power. Eliminating t and renaming the variables (r -+ t and s -- rs) 
we obtain two possibilities for equation (4) in this case: 

(I) r4 - ps4 = -8t2 with (r, s) = (s, t) = (t, r) = 1 and r, s odd, 

or 

(II) r4 - ps4 = 8t2 with (r, s) (s, t) = (t, r) = 1 and r, s odd. 

We can impose a restriction on p as follows. If either of (I) or (II) is soluble, 
and if q (a prime) divides t, then r4 = ps4 (mod q), and so the Legendre 
symbol (p/q) = (q/p) = 1 by quadratic reciprocity; this gives (t/p) = 1. 
Therefore, we can find an integer u satisfying u2 = t (mod p), and then we 
have 8U4 =- r4 (mod p) , with the upper sign for (I) and the lower sign for 
(II). As p -1 (mod 8), -1 is a quartic residue modulo p, and so 2 must also 
be a quartic residue modulo p (that is, p is a G-prime) and both (I) and (II) 
are insoluble if this is not so. 

Case 2. Equation (4) has the form r4 + 1 6ps4 = t2 and r is odd. 

Arguing as above, we obtain four subcases, with S = 5152 and (SI, S2) = 

t - r2 = 2s 4 t + r2 = 8ps2, 

t - r2 = 2psj4 t + r2 = 8s 4 
2~~~~~~~~ 

t - r2 = 8s4 t + r2 = 2ps4, 
t-2= 4 t+ 2 t - r = 8p4 t + r2 =2s4. 
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The first two subcases are impossible because r is odd. The fourth subcase 
gives 

(5) r2 = S4 -4ps 4 t = + 4ps4 

and so (s5 - r)(s2 + r) = 4ps4. As in Case 1, this gives s, = uv, (u, v) =1, 
and 

s2 +r=2u4, s2-r=2pv , or 

52 + r = 2pv4, s2 r= 2u4. 

If the first pair of equations apply, then s2 = u4 + pv4 and r = u4 pv4, and 
the corresponding point on Cp , that is (r2/4s2, rt/8s3) = 2(U2/V2, s2u/v3), is 
a double point. Similarly, if the second pair apply, then the point is 
2(U2/V2, -s2u/v3), another double point. Hence, as we are mainly concerned 
with the generators of Cp , we may exclude the fourth subcase completely. Elim- 
inating t from the third subcase, we find that s1 is even and so, relabelling the 
variables (r --* t, s, -- 2r and S2 -- s), we obtain the third possibility for 
equation (4): 

(III) 64r4 - ps4 =-t2 with (r, s) = (s, t) = (t, r) = 1 and s, t odd. 

Gauss's result mentioned in the introduction states that '2 is a quartic residue 
modulo p if and only if p can be expressed in the form x2 + 64y2'. The proof 
of this classic result can easily be adapted to show that if equation (III) is 
soluble, then 2 is a quartic residue modulo p, and so p is a G-prime. 

Hence, we need to consider the three equations (I), (II) and (III); they are 
the three principal homogeneous spaces for Cp (see Silverman [8, Chapter 10]). 
For (I) or (II) the corresponding point on the curve Cp is 

(6) (4t2/r2s2, t(r4+ ps4)/r3s3) with r and s odd, 

and for equation (III) the corresponding point is 

(7) (t2/16r2s2, t(64r4 + ps4)/64r3s3) with s and t odd. 

In each case p must be a G-prime for a solution to exist. Further, by Gauss's 
result, quadratic reciprocity, and the usual descent arguments, we see that, cor- 
responding to the cases (I), (II) and (III) above, p can be expressed by three 
distinct quadratic forms as follows: 

(8) p=a2 +8b2 =c2-8d2= 64e2+ f2. 

Note that these may provide solutions to (I), (II) or (III) directly. If a is a 
square, then (I) has the solution r = Va, s = 1, t = b; similarly if c is a 
square, (II) is soluble, and if e is a square, (III) is soluble. We shall see later 
that generators of the group Cp , when they exist, are given by solutions of (I) 
and (II) using (6). 

For later use we have the following consequences of the equations (8): 

(9) (a/p) = (b/p) = (c/p) = (d/p) = (e/p) = (f/p) = 1, 

(10) a E I or 7 (mod 8) and c = I or 3 (mod 8). 
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For (9), we have by (8), a2 = p (mod b), and so, by quadratic reciprocity, 
(b/p) = 1. Further, as both -1 and 2 are quartic residues modulo p, we 
can find an integer n to satisfy n4-= -8 (mod p) which, using (8) again, gives 
(nb)4 = a2b2 (mod p) and (?ab/p) = 1 for some choice of the sign. But p = 1 
(mod 8), and so (a/p) = 1 follows by the first result. For (10), we have by 
(8) and as a is odd, (2p/a) = 1, and so (2/a) = 1 by (9). Therefore, a -1 
(mod 8) follows using the properties of the Jacobi symbol. The remaining parts 
of (9) and (10) are proved similarly. 

3. Two POINTS KNOWN 

In this section we show that if two of the equations (I), (II) or (III) are soluble, 
then the third is also soluble. We shall also give a characterization of the general 
solutions of each of these three equations. These provide an illustration of the 
operation of the Weil-Chatelet group of Cp, see Silverman [8, Chapter 10]. 

First we consider the case when a solution {r1, si, t I} of equation (I) cor- 
responding to the point P1 on the curve Cp, and a solution {r2, s2, t2} of 
equation (II) corresponding to P2 on Cp , are known. In this case we shall de- 
scribe an algorithm which gives two solutions to equation (III); these solutions 
correspond to the points PI + P2 and P1 - P2 on Cp . We may assume that 
(ri, si, tl) = (r2, S2, t2) = 1. 

We shall work with the following expressions: 

A = r1s1t2 + r2S2t1, B = rIsIt2-r2S2tI, 

(l l) ~C = (rl2r -ps2S22)/8 D = rI2s +r2 1.2 

K = r2s2t2(r4 +ps4) - risti(r24 +ps24) 

L = r2s2t2(r4 + ps4) + ris, t1 (r2 + psp). 

A number of identities exist between these expressions; they are given in the 
following lemmas. The most important is 

Lemma 1. The equation AB = CD holds. 

Proof. We have 

8AB = 8t2r2s2 - 8tl2r2 s2 

4 (r24-ps 4)rr2s2 + (r - ps4)r 2s2 by (I) and (II) 

=2 22 + r22) -ps 2s2 (rl2s2 + r22S2) 8CD. Ol 

Lemma 2. Let U = r2r22 +ps s22 and V = r22 s2 - r2s2. Then 

(i) KL =,AB(U2-pV2), 
(ii) 4(A2 + B2) = U V, 
(iii) L2 - K2 = (A2 _B2)(64C2 + pD2). 
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Proof: (i) We have, using the identity 

X3 + 3X2y - 3xy2 _ y3 = (x -y)(x2 + 4xy + y2) 

in the fourth line, 

8KL = 2S2(r4 + pS4)2 - 8t2r2s2(r24 + pS4)2 

= (r24 - ps24)r22 s2(r4 + pS4)2 + (r 4 
- ps4)r 2sl2(r24 + Ps 4)2 

= D[rir2 + 3pr r24sls2 - 3p2ri r2 sIs2 

- p3s 6s6 _ p(r2r22 - ps2S2)(r24 s + r4 s4)] 

= 8DC[r4r24 + 4pr 2r 2 s2s2 + p2s 4's4 -p(r4s4 + r1 4s4)] 

= 8AB(U2 _pV2) 

by Lemma 1. Propositions (ii) and (iii) follow in a similar manner. o 

Lemma 3. The integers C, D, r1, ..., t2 satisfy the following congruence prop- 
erties: 

(i) r1, r2, , S2 are odd and C 2, 
(ii) p{p r, r2s, s2 and p { C, 
(iii) 2 11D and ti t2 (mod 2), 
(iv) 2 1 A, 21 B, and 21 C. 

Proof. Parts (i) and (ii) follow from our assumptions that (r1, s1, ti) = 
(r2, S2, t2) = 1 . For (iii) and (iv), D is even by (i) but, as D is a sum of 
squares, 4 1 D would contradict (i). Secondly, if t, and t2 have different pari- 
ties, then both A and B are odd, but this conflicts with the evenness of D by 
Lemma 1, and so (iii) follows. Consequently, both A and B are even, and the 
evenness of C follows by Lemma 1. o 

Definition. Let the coordinates (see (6) and (7)) of the points P1, P2, P1 + 
P2 and P1 - P2 be denoted by (xl, y1), (x2, Y2), (x12, Y12) and (x21, Y21), 
respectively. 

The next two lemmas give expressions for x12, *.., Y21 

Lemma 4. We have xI 2 = K2/ 16A2B2, x21 L2/ 16A2B2. 

Proof. The line through the points (x1 , yl) and (x2, Y2) has equation 

(x2 -x1)Y = (Y2 - Y)x + y1x2 - x1y2. 

If we let rlr2sIs2 = Z, then 

X2 - = 4AB/Z2, 

y1x2 - x1y2 = 4tit2K/Z3, 

Y2 - y' = [rlst2(r3 + Ps4) - r23s3tI(r4 + ps4)]/Z3, 

and our equation for the line becomes 

(12) 4ABZy = [r 3s 3t2(r 4 + ps4) - r23s3t1 (r 4 + ps4)]x + 4t1 t2K. 
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Squaring both sides of this equation and replacing y2 by X3 + pX, we obtain 
a cubic in x whose roots are xl, x2 and x12, viz: 

(r,slx - 4t,)(rPs2x - 4t2)(16A2B2x K2) = 0, 

and the result follows. An exactly similar argument gives the value of x2l. o 
Lemma 5. We have 

(i) Y12 = [K(64A2C2 + pB2D2)]/64A3B3 

(ii) Y21 = -[L(64B2C2 + pA2D2)]/64A3B3. 
Proof. By Lemma 4, (i) follows by substituting the value of x12 in (12) and 
collecting terms, and (ii) follows similarly. o 

Theorem 1. We have 

(i) - K2 = 64A2C2 _ pB2D2 

(ii) - = 64B2C2 _ pA2D2 

Proof. (i) As (X12, Y12) is a point on Cp , we have, by Lemmas 4 and 5, and 
dividing by K2/(4AB)6, 

(64A2C2 + pB2D2)2 K4 + 256pA4B4 = K4 + 256pA2B2C2D2 

by Lemma 1. Hence, 

(13) ?K2 - 64A2C2 _ pB2D2. 

To evaluate the sign, suppose 211 B; then by Lemmas 1 and 3 we have 221+2 
pB2D2 and 221+6 1 64A2C2. Hence, 221+2 1 K2, which shows that ?K2/22t+2 
and -pB2D2/221+2 are odd integers congruent modulo 8. Therefore, the only 
possible sign in (13) is minus, and (i) follows. The proof of (ii) is similar. o 

This theorem provides an algorithm for solving equation (III) in ?2 as follows: 
In (i) of Theorem 1 cancel the common factors of K, AC and BD (or of 
L, BC and AD in part (ii)); then AC and BD become squares (and similarly 
for BC and AD), thus providing the required solutions. To justify this, we 
consider first the case when A, B, C and D have a common factor. 

Lemma 6. If q divides A, B, C and D, then q2 divides both K and L. 
Proof. By Lemmas 1 and 3 we note that 2 divides A, B, C and D, no higher 
power of 2 has this property, and, by definition, 4 divides both K and L. 
Hence, as p { q, we may assume that q is coprime to both 2 and p. 

Secondly, with U and V as given in Lemma 2, we have U2 + p V2 = 64C2 + 
pD2, and so q2 1 U2 +pV2 and, by Lemma 2, q2 I UV. Together, these show 
that q I U and q I V. Hence, by Lemma 2 again, we see that q4 I KL and 
q4 - L2- K2, and the lemma follows. o 

Now let qul 1j A, qU2 1j B, qU3 11 C and qU4 1j D. By Lemma 7 we may 
assume that one of u1, U2, U3 or U4 is zero. So, for the first case, suppose uI 
is zero, and then (by Lemma l) U2 = U3 + U4. This gives qU3 11 AC, qU3+2U4 11 
BD, q2U3+U4 11 BC, and qu 1 AD. Hence, the factor q2u3 can be cancelled 
from both sides of equation (i) in Theorem 1. Now the only occurrence of 



1258 H. E. ROSE 

q in this equation is: q4u4 in the prime factorization of B2D2. Similarly, 
in equation (ii), q2U4 can be cancelled throughout, leaving the factor q4U3 in 
B2C2. The cases when U2, u3 or U4 are zero can be dealt with similarly. If 
this process is carried out on all primes dividing AB, then, via Theorem 1, two 
solutions of equation (III) are given by this algorithm. 

We shall illustrate this algorithm with the prime 1 1969. We have (see (8)) 

11969=812+8x262=1132-8x102=652+64x112. 

Now 81 is a square, and so we have a solution to equation (I) given by: r, = 
9, s, = 1, t, = 26. Secondly, although 113 is not a square, we have 
(1 13 + 10V)(3 + v'-)2 = 2401 + 848V4 (using the identity 32 - 8 x 12 = 1), 
and so equation (II) has the solution: r2 = 49, S2 = 1, t2 = 848. Substituting 
these values in (1 1), we obtain 

A = 8906 = 2 x 61 x 73, B = 6358 = 2 x 11 x 172, 

C = 22814 = 2 x 11 x 17 x 61, D = 2842 = 2 x 17 x 73, 

K = 4 x 5 x 11 x 17 x 73 x 2131, L = 4 x 5 x 17 x 61 x 102301. 

Now AC= 612 x 4 x 11 x 17 x 73 and BD = 172 x 4 x 11 x 17 x 73. Hence, 
we can cancel the factor (4 x 11 x 17 x 73)2 from (11) and we obtain the 
following solution of (III): 

-106552 = 64 x 614 - 11969 x 174. 

Similarly, BC =112 172 x 17 x 61 and AD = 732 x 4 x 17 x 61, and so 
the second solution is 

-5115052 = 64 x 1874 - 11969 x 734. 

Further algorithms. An exactly similar algorithm to the above exists when 
solutions of (I) and (III) are known, or when solutions to (II) and (III) Care 
known. Suppose {r,, sl, tl} is a solution to (III) corresponding to the point 
Qi = (xl, Y) on the curve Cp with (rl, Sl, tl) = 1, and {r2, S2, t2} is a 
solution to (I) [or (II)] corresponding to the point Q2 = (x2, Y') on the curve 
Cp with (r2, s2, t2) = 1. Following the procedure above, we define 

(14) A' = 8r1s1t2 + r2s2tI, B' = 8r1s1t2 - r2S2tI 

2r2 22 2D= 2 2s2 C' = 8rr ? PSI 2 D2, '= 8rIs2 T r2sI 

where the upper signs apply when {r2, S2, t2} is a solution to (I), and the lower 
signs apply when equation (II) is the given one. As in Lemma 1, it is a simple 
matter to show that A'B' = C'D'. Also, we define K' and L' by 

K' = ris1tI(r24 + ps4) - r2s2t2(64r4 + ps4), 

LI = r1s1tI(r24 + Ps4) + r2S2t2(64r4 + psp), 
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and if Q I+ Q2= (X2 Y2) and Q1- Q2 = (X21, Y'1), then 

X/ =4K'2 /A'2B'2 2 = K' (A'2 C'2 +pB'2D'2)/A'3B'3, 

X/ = 4L'2 /A'2B'2 Y, =-L'(B'2 C'2 +pA'2D'2)/A'3B'3. 

Corresponding to Theorem 1 we have 

Theorem 2. There holds 

(i) ? 8K'2 = A'2 C'2 -pB'2D'2 

(ii) ? 8L'2 B'2 C'2 _pA-2D/2 

where the upper signs apply if {r2, 52, t2} is a solution to equation (I), and the 
lower signs apply when a solution to equation (II) is given. 
Proof. See the proof of Theorem 1. o 

The algorithm described above also applies here. In (i) of Theorem 2 we 
cancel the common factors of K', A'C' and B'D', and the resulting expressions 
provide solutions to (II) [or (I)] as A'C' and B'C' are then squares. Note that 
we obtain two solutions corresponding to the points Ql + Q2 and Ql - Q2. 

Therefore, if Qi = PI + P2 and Q2 = PI1, our new solutions to equation (II) 
[or (I)] given by Theorem 2 correspond to the points P2 and 2P1 + P2 on Cp . 

We shall show now that this is always the case. If we have a solution to 
one of our equations (*) (where (*) is (I), (II) or (III)), with corresponding 
point P E Cp, then, for all points R E Cp , there is another solution to (*) 
corresponding to the point P + 2R, and all solutions of (*) are generated in 
this way. 

Theorem 3. Suppose we are given a nontrivial solution to equation (I), (II) or 
(III) corresponding to the point P E Cp; then this equation has infinitely many 
solutions, and the corresponding points on Cp have the form P + 2R, where R 
is an arbitrary point on Cp . 
Note. We are not assuming that the points P and R are of the same type. 

Proof. We use the same method as in the previous two cases. We shall give the 
proof for equations (I) and (II); an exactly similar argument applies in the re- 
maining cases. Suppose the point P has coordinates (4t2/r2s2), 
t(r4 + ps4)/r3s3 , where F8t2 = r4 - ps4, and R has coordinates (a2/c2, 

ablc3), where b2 = a4 + pc4 (see (3) and (7)). The coordinates of 2R are 

((a4 - pc4)2/4a2b2c2 ,(a4 - pC4)(a8 + 6pa4c4 + p2c8)/8a3b3c3), 

and we may assume that r and s are odd, and a and c have different parities. 
Following the procedures above, we define 

A" = 4tabc + rs(a4 - pc4), B" = 4tabc - rs(a4 - pc4), 

C" = pr2b2 + 2ps2a2c2, D" = 2r2a2c2 ? s2b2 

K" = rst(a8 + 6pa4c4 + p2C8) - abc(r4 + ps4)(a4 - pc4)/2 
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where the upper [lower] signs apply when equation (I) [(II)] is being used. 

Lemma 7. We have A"B" = C"D". 

Proof: Using the equations F8t2 = r4 -ps4 and b2 = a4 + pc4, we obtain 

C"D" = F2r4a2b2c2 - r2s2b4 + 4pr2s2a4c4 i 2ps4a2b2c2 

= F2a2b2c2(r4 -ps4) - r2s2(b4 - 4pa4c4) = A"B". Ol 

Continuing the main proof, we see that the coordinates of the point P + 2R 
are 

(4K"112 /IA2B12, K"(A"/2 C"2 + pB"2D"2 )/A"3B"3 ) 

and we have 

F8K"2 = A"/2 C"2 - pB",2D"2. 

We now cancel the common factors of K", A"C" and B"D" in this equation, 
and the result is a new solution to equation (I) [or (II)]; the details follow exactly 
those given above for Lemmas 2 and 6. o 

Example. Let p = 73 and let P and R be the generators of the group Cp 
corresponding to equations (I) and (II), respectively. Hence, using the supple- 
ment table, (I), (3) and (4), we have r = s = 1, t = 3, a = 2, b = 77 and 
c = 3, and substituting these values in the above, we have 

A" =-353, B" = 17 x 673, C" = -673, D" = 17 x 353, 

K" = 353 x 673 x 873. 

These values now give a new solution to equation (I) corresponding to the point 
P + 2R [as (353, 673)= 1]: 

14- 73 x 174 = -8 x 8732. 

Finally, we prove the converse of Theorem 3; again the method of proof is 
very similar to that used in the above proofs. 

Theorem 4. If {r, , s,, t, } and {r2, 52, t2} are two solutions to one of the 
equations (I), (II) or (III) with corresponding points P1 and P2, then there is a 
point R E Cp with the property P2 = PI + 2R. 

Proof. We give the proof for equation (I); the same argument applies in the 
remaining cases. As above, we define 

A* = r1s1t2 + r2s2tI B* = ri s1t2 - r2S2tI, 

c* = r2r2 + Ps2s2 D* = (r 2s2 -r22 S2)/8, 

K* = r2S2t2(r4 + ps4) - ris, t1 (r24 + Ps4) 

L* = r2S2t2(r4 + ps4) + rjsjtl(r4 + Ps4). 

Repeating the arguments of Lemmas 1 to 6, we have 

A*B* = C*D*, 
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the coordinates of P2 - P1 are 

(L*2/ 16A*2B*2 , -L* (B*2C*2 - 64pA*2D*2)/64A*3B*3) 

and 

L*2 = B*2C*2 - 64pA*2D*2. 

Note that we have a plus sign on the left-hand side of this last equation, as 
2 11 C* in this case; see the proof of Theorem 1. The result now follows using 
(5) of ?2. o 

4. ONE POINT KNOWN 

In view of the results above a natural question to ask is: suppose we are given 
a solution to just one of our equations (I), (II) or (III); is there an algorithm 
which will generate solutions to the remaining two equations? This is a much 
harder problem; it is not definitely known that solutions exist, but we have the 

Conjecture. If p is a G-prime and the rank of the curve Cp is not zero, then 
it equals 2. 

Silverman [8], and others, have shown that this Conjecture is a consequence 
of the Shafarevich-Tate Conjecture, which states that the Shafarevich-Tate 
group Im for Cp is finite. Although some progress has been made on this second 
conjecture recently, it remains open at this time. The numerical evidence pre- 
sented below shows that our conjecture is valid for all primes p < 50000. Also, 
this Conjecture can be replaced by the following apparently simpler question. 

Suppose we have a solution {r, s, t} to equation (I) [the argument is similar 
in the other two cases]. Then we can find solutions to equations (II) and (III) 
provided we can find a nontrivial simultaneous integer solution {x, y, z, w} 
to the pair of equations 

x2+ 16txy - 8r4y2 = 8s4z2 +pw2, 

xy = zw. 

Using (9) and (10), we can easily show that this pair of equations has common 
local solutions for all primes q. But this does not necessarily lead to simul- 
taneous integer (global) solutions. We note that the second equation above is 
identical to that in Lemma 1; there it was the main link in the algorithm, here 
it seems to be the main stumbling block to progress; for further details see Rose 
[6]. 

5. NUMERICAL DATA 

Extensive computer searches have been undertaken to find the ranks and gen- 
erators of the curves (1) for all G-primes p < 50000; the results are presented 
in the supplement. After some preliminary trials using a HP 28s calculator, the 
main searches were made using the package PARI/GP (developed by Cohen 
and his collaborators in Bordeaux, France) on a Sun 4. First, attempts were 
made to solve one or more of the equations (I), (II) and (III). If these failed 
to give solutions, then the value of the L-function for the curve at s = 1 was 
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calculated in order to prove that the rank was indeed zero, that is, (I), (II) and 
(III) are insoluble; see below. 

The method used to attempt to solve our equations is as follows. First con- 
sider equation (I). Note, by (10), we can choose the sign of a so that a - 1 
(mod 8). Rewriting (I) and using (8), we look for integers x and y to satisfy 

(a2 + 8b2)(x2 + 8y2) = (ax ?8by)2+ 8(ayFbx)2 = r4 + 8t2=ps4; 

that is, we look for s, x and y to satisfy 

(15) x2 + 8y2 = s4, ax 8by is a square, r2, 

and then t = ay F bx. The equation in (15) has the parametric solution 

X = (m2 - 2n2)2 - 8m2n22 y = 2mn(m2 - 2n2), s=m2 + 2n2. 

Hence, using (15), we try various integers m and n until we find a pair such 
that 

(16) a((m2 - 2n2)2 - 8m2n2) + 16bmn(m2 - 2n2) is a square, r2, 

and then the values of s and t are determined using the above. For equa- 
tion (II) the left-hand side of (16) is replaced by c((m2 + 2n2)2 + 8m2n2) + 
16dmn(m2 + 2n2) [if c _ 3 (mod 8), put 3c ? 8d for c and c ? 3d for d, 
see (8) and (9)], and for equation (III) the left-hand side of (16) is replaced 
by ?e((m2 - 4n2)2 - 16m2n2) + fmn(m2 - 4n2), where both signs must be 
considered. 

The method can be extended in the following way. Multiplying (16) by a 
and rewriting, we have 

(17) w2=-8pu2+av2, 

where 

(18) u=mn, v =r and w=a(m2- 2n2) + 8bmn. 

Using (9) and (10), we can easily see that equation (17) is soluble by Legendre's 
Theorem. Hence, one way to solve (I) is to look for general solutions to (17) 
subject to the conditions (18). In practice we found the most efficient method 
was to use (16) directly. First we tried all values of m and n satisfying 0 < 
m < 500 and odd, and -250 < n < 250. If this failed, using the first few 
primes q, we sieved out those values of m and n for which (16) is impossible 
modulo q, and then tried larger values of m and n to solve (16). For example, 
if p - 2 (mod 5) (generally the most intractable case), then 5 1 r and so the 
left-hand side of (16) must be congruent to 25 modulo 100. 

It is worth pointing out that, for each G-prime p under consideration, in 
all cases where solutions to one of the equations (I), (II) or (III) were found, 
solutions to the remaining two equations were also found-the prime 41521 
was by far the most refractory-that is, in all 366 cases where the rank of the 
corresponding curve is positive, it does, in fact, equal two. Also in all of these 
cases, at least one of the three equations has a 'small' solution; that is, one 
with m and n (in (16) or its replacements for equations (II) or (III)) less than 
20, the 'worst' case (for primes less than 50000) being p = 47497, where, for 
equation (II), the smallest solution is given by m = 7 and n = 18. Note that 
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the smallest solutions of the two remaining equations can be very 'large', for 
example with the prime p = 41521. In this example the smallest solutions 
for equations (I) and (II) are given in the supplement (for (I) the solution is 
generated by m = 156347, n = 41668), but note that equation (III) has the 
solution 5, 1, 39 and the corresponding values of m and n in this case are 1 
and 0, respectively. 

Rubin [7], developing some work of Kolyvagin and others, has proved some 
parts of the Birch and Swinnerton-Dyer Conjecture. In particular he has shown 
that, if an elliptic curve has complex multiplication (our curves Cp have com- 
plex multiplication in the field Q(i) of Gaussian numbers), and if the value of 
the L-function for the curve at the point s = 1 is nonzero, then the curve has 
only finitely many points defined over Q(i); and so the rank of the curve over 
Q is zero. We applied this to our numerical work. For those curves Cp where 
we were unable to find solutions to equations (I), (II) or (III) after fairly short 
trials, we calculated the values at s = 1 of the corresponding L-functions. In 
all cases we found these values to be positive, and hence, by the result quoted 
above, the ranks are zero and no further trials were required. Following Buhler, 
Gross and Zagier [3], we used the following formula to calculate the L-function: 

L(Cp, 1) = 2 P() exp( 4 

where ap(q) is the trace of Frobenius for primes q, and it is extended to all 
positive integers in the usual way (see, for example, Cohen [4, p. 406]). [Note 
that the curve Cp has conductor 64p2, and the factor 2 occurs because the sign 
of the functional equation is positive for all of our curves; this was calculated 
using the method given in Cohen [4, p. 406].] To keep the computations within 
reasonable time bounds, we replaced ox in the above sum by 16p and took 
the sum over those n satisfying n =1 (mod 4), because for all curves under 
consideration the coefficients ap(n) are zero otherwise. If we then divided the 
result by the product of the real period, the Tamagawa numbers (in all cases 
cp = 2 and the remainder are all equal to 1), and the inverse of the square 
of the order of the torsion subgroup of Cp (= 1/4 in all cases, see (2)) as 
required by the Birch and Swinnerton-Dyer Conjecture, we obtained in all cases 
a square integer to at least five decimal places. Hence, as a by-product of these 
calculations we obtained (assuming the validity of this conjecture) the values S 
of the orders of the Shafarevich-Tate groups III. For all G-primes p for which 
r(Cp) = 0 we found that S = 16 except in the following cases: S = 64 when 
p is one of the following 28 primes: 

4937 12161 15017 25601 31337 33937 44497 
10657 12697 18257 26497 31817 34297 47161 
10937 13417 23857 28697 32297 35897 47657 
11777 14897 25057 29761 33377 36857 47777 

and S= 144 when p is 

21577, 28537, 30937. 
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Note the connection between the fact that in all cases 16 1 S and the 4-descent 
described above, and that the structure of 11 is determined by the correspond- 
ing 2-descent and the Cassels pairing Z/VS-Z x Z//S-Z. Some authors have 
suggested that the value of S increases, if only slowly, as the value of the con- 
ductor increases. In particular, if Sp denotes the order of 11 for the elliptic 
curve Cp, then it is conjectured that for large p the approximate value of Sp 
is pl/4?o(l). Our data shows a fairly uniform spread through the range 1- 
50000 for the higher values of S, and so no conclusions can be drawn from 
our calculations. Owing to the computer time required, we did not calculate 
the orders S of the groups 11 for those primes p where r(Cp) = 2; this will 
be undertaken in the sequel. 

Our calculations have established the values of r(Cp) for all primes p less 
than 50000 and congruent to 1 modulo 8. For the 629 non G-primes q, r(Cq) = 
0 (see ?2), and for the 625 G-primes p the table in the supplement gives either 
the value of the L-function at s = 1 when r(Cp) = 0 (in 259 cases), or the 
values of r and s for equations (I) and (II) when r(Cp) = 2 from which the 
coordinates of the generators of the group Cp can easily be calculated using (6) 
(366 cases in all). In some cases equations (I) or (II) have two distinct solutions 
where both r and s are roughly similar in size; in these cases the solution with 
the smaller value of s was chosen. This was not checked in all cases. 

Finally, at the referee's suggestion and after some discussions with John Cre- 
mona, we have included some data on the Mordell-Weil lattices of the rank-two 
curves. Suppose PI and P2 generate Cp modulo torsion (that is, Cp is gen- 
erated by Pi , P2 and (0, 0), see (2)). Let (Pi, Pj), for i, j = 1 or 2, denote 
the Neron-Tate height pairing and let Rcp denote the elliptic regulator of Cp , 
see Silverman [8, p. 232]. Over the complex field C, the generators of the 
Mordell-Weil lattice A for Cp can be taken to be 

co1 = + (P1, P, 

(02 =((P1, 2) + i Rc)/+(P1,P). 

Then the invariant T, a complex number in the upper half-plane, is defined by 

T = (02/(1 = ((P1, P2) + i Rc,)/(P , P1) 

modulo transformations by elements of SL(2, Z). Once z has been moved to 
the fundamental region of the group SL(2, Z), it is independent of the choice 
of the generators P1 and P2 of Cp, and so provides information about the 
shape of the Mordell-Weil lattice A. 

For each of the rank-2 curves discussed in this paper we computed (using 
PARI/GP) the value of T, and these values are given in the table in the sup- 
plement. In some cases, to obtain a value of z in the fundamental region of 
SL(2, Z), ? 1 was added to the computed complex number; no other SL(2, Z) 
transformation was required. In this region the values of z for approximately 
half of the curves under consideration lie in a segment of the annular region 
bounded by the ellipses 375x2 + y2 = 100 and 480x2 + y2 = 200, and the 
lines 2x ? 1 = 0, where x denotes the real part and y the imaginary part. 
Only six values of z lie below this region, and the remainder above. Also the 
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proportion of values of z with positive or negative real part is approximately 
equal, and those with larger imaginary part tend to correspond with the larger 
values of the prime p. 
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